The numerical range of elementary operators II
نویسندگان
چکیده
منابع مشابه
On the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولon the decomposable numerical range of operators
let $v$ be an $n$-dimensional complex inner product space. suppose $h$ is a subgroup of the symmetric group of degree $m$, and $chi :hrightarrow mathbb{c} $ is an irreducible character (not necessarily linear). denote by $v_{chi}(h)$ the symmetry class of tensors associated with $h$ and $chi$. let $k(t)in (v_{chi}(h))$ be the operator induced by $tin text{end}(v)$. the...
متن کاملNumerical Range of Lie Product of Operators
Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...
متن کاملProduct of Operators and Numerical Range
We show that a bounded linear operator A ∈ B(H) is a multiple of a unitary operator if and only if AZ and ZA always have the same numerical radius or the same numerical range for all (rank one) Z ∈ B(H). More generally, for any bounded linear operators A,B ∈ B(H), we show that AZ and ZB always have the same numerical radius (resp., the same numerical range) for all (rank one) Z ∈ B(H) if and on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2001
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(01)00389-5